Hyper2d: A numerical code for hyperinterpolation on rectangles
نویسندگان
چکیده
Hyperinterpolation at Morrow-Patterson-Xu cubature points for the product Chebyshev measure provides a simple and powerful polynomial approximation method on rectangles. Here, we present an accurate and efficient Matlab/Octave implementation of the hyperinterpolation formula, accompanied by several numerical tests.
منابع مشابه
Polynomial approximation and quadrature on geographic rectangles
Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of Sd, d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined by longitudes and (co)latitudes (geogra...
متن کاملHyperinterpolation on the sphere
In this paper we survey hyperinterpolation on the sphere Sd, d ≥ 2. The hyperinterpolation operator Ln is a linear projection onto the space Pn(S) of spherical polynomials of degree≤ n, which is obtained from L2(S)-orthogonal projection onto Pn(S) by discretizing the integrals in the L2(S) inner products by a positive-weight numerical integration rule of polynomial degree of exactness 2n. Thus ...
متن کاملOn the norm of the hyperinterpolation operator on the unit disk and its use for the solution of the nonlinear Poisson equation
In this article we study the properties of the hyperinterpolation operator on the unit disk D in R. We show how the hyperinterpolation can be used in connection with the Kumar-Sloan method to approximate the solution of a nonlinear Poisson equation on the unit disk (discrete Galerkin method). A bound for the norm of the hyperinterpolation operator in the space C(D) is derived. Our results prove...
متن کاملOn the norm of the hyperinterpolation operator on the unit disk
In this article we study the properties of the hyperinterpolation operator on the unit disk D in R, approximating the orthogonal projection of a function onto the family of polynomials of degree n. A bound for the norm of the hyperinterpolation operator in the space C(D) is derived. Our results then prove the uniform convergence of the hyperinterpolation approximation of functions in the class ...
متن کاملHyperinterpolation in the cube
We construct an hyperinterpolation formula of degree n in the three-dimensional cube, by using the numerical cubature formula for the product Chebyshev measure given by the product of a (near) minimal formula in the square with Gauss-Chebyshev-Lobatto quadrature. The underlying function is sampled at N ∼ n/2 points, whereas the hyperinterpolation polynomial is determined by its (n + 1)(n + 2)(n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 183 شماره
صفحات -
تاریخ انتشار 2006